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Critical Issue ceecerd]
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m Poisson solvers used in quasistatic electric and
gravitational particle-in-cell simulations generally fail
when the grid aspect ratio >> 1

B Some important problems involve extreme aspect ratios:
® Long beams in rf accelerators: length ~1m; radius ~1Tmm
® Beams in induction linacs: length~ 10s of meters; radius ~ cm
@ Galaxies

m Standard grid-based approaches involve using a very
large # of grid points in the long dimension, leading to
prohibitively long run times

m As aresult, it is extremely difficult model high aspect ratio
systems accurately using standard grid-based
approaches
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Observations eecce?]

m The Green function, G, and source density, p, may change
over vastly different scales

m G is known apriori; p is not

We should use all the information available regarding G so that the
numerical solution is only limited by our approximate knowledge of p

m Example: 2D Poisson equation in free space

B(x,y) = [ Gx-x',y - y)p(x',y")dx'dy
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Standard Approach e |
(Hockney and Eastwood) '
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m This approach is equivalent to using the trapezoidal rule
(modulo treatment of boundary terms) to approximate the
convolution integral

m This approach makes use of only partial knowledge of G
m The error depends on how rapidly the integrand, pG, varies
over an elemental volume

@ If p changes slowly we might try to use a large grid spacing; but this can
introduce huge errors due to the change in G over a grid length
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Cellular Analytic Convolution (CAC) - ;

i
m Assume the charge density, p, varies in a prescribed way in each cell

m Use the analytic form of the Green function to perform the convolution
integral exactly in each cell, then sum over cells

m Example: linear basis functlons to approximate p in a cell:

CARED) p,jfdxfdym = x)(h, = y)G(x; = x, = X'y, =y, =y +

i

D pm,fdxfdy'x%h ~IG(x, =X, =Xy, =y, =¥+

i

D pwlfdxfdy (h, = x)YG(x,—x, = x',y, =y, —y')+

i

2 pi+1,j+1jdx'fdy'x'y'G(xi —X; =X,y =Y =)
iJ 0 0

m Shifting the indices results in a single convolution ¢ij = EG?ﬂ;

IBX%IVIHQ an integrated effective Green function:
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Cost and Accuracy of CAC; /\I .
Improvement over Standard Approach =~ [
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m Cost: Computing the elemental integrals can be done via
analytical formulae in 2D (and 3D?) or by num. quadrature
® Requires more FLOPS than simply using G; but...

® In situations where the grid is fixed, this only needs to be done once at

the start of a run. Amortized over many time steps, this does not
significantly impact run time.

m Accuracy: Method works as long as the elemental integrals

are computed accurately and as long as the grid and # of
macroparticles are sufficient to resolve variation in p

m CAC maintains accuracy even for extreme aspect ratios
(>1000:1)

As a result, CAC performs orders of magnitude better than

the standard convolution algorithm for realistic problems
involving large aspect ratios
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Example: Uniformly filled 2D ellipse

m Aspect ratiois 1:1000 -- x_..=0.001,y__. =1
m Calculation of fields using (1) standard Hockney algorithm
and (2) new CAC approach

® In both cases, performed convolutions for the fields directly (rather than
calculating the potential and using finite differences to obtain fields)

m Calculation performed on a grid of size £0.0015 x * 1.5
using a mesh of size

® Hockney: 64x64, 64x128, 64x256,..., 64x16384
® CAC: 64x64
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1:1000 test case; Ex vs. x:
Standard Hockney Algorithm has huge errors
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Ex vs. X : Reduced Vertical Scale
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New algorithm (CAC) provides better than 1% accuracy using 64x64 grid
(black curve). Old algorithm is worse everywhere on 64x2048 (purple);
error > 10% at some locations on 64x4096 (blue); requires 64x16384 to

achieve < 1% everywhere (red).
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Bottom Line crceen] |
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m For this test problem, the standard Hockney algorithm
would require ~500 times more computational effort to
achieve the same worst-case accuracy as a simulation
using the new ACE approach.

m CAC works whether the aspect ratio is large, small, or
near unity, i.e. it is generally applicable.

m Verified in 2D; we expect the same to hold for 3D
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Extension to Beams in Pipes ceceeed] i
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m CAC provides a crucial advantage, since the Green function falls off
exponentially in z, though p(z)may change slowly over meters

® Due to shielding, sum can be truncated in the “long” direction:

— eff
¢l,] - E E Gi—i',j— jv l.',j'

m Forlong beam in a conducting pipe, if grid length in z is >> pipe radius,
can truncate at nearest neighbors:

eff
l] E(Gl i, j— lloi',j—1+Gl i, jlroi,j +Gl 3 ]+110i',j+1)

m For arectangular pipe, can rewrite Green function as a sum of
convolutions and correlations; then can still use FFT-based approach
to sum over elements
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